The Computational Complexity of two Card Games with Theoretical Applications

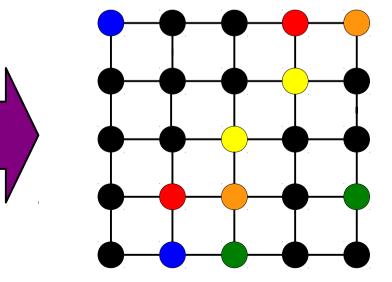
Valia Mitsou Hungarian Academy of Sciences

We study...

...games and puzzles which can be naturally re-formulated as variations of well-known graph problems.

Flow

Vertex-disjoint paths

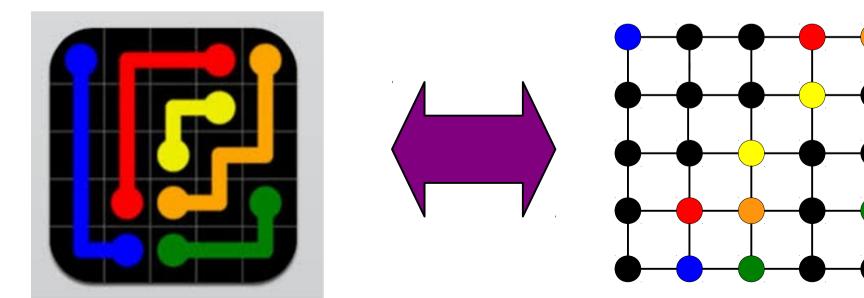


Who cares?

- Borrow known complexity results regarding the problem to prove the complexity of the game.
- Use the intuition provided by the game to advance knowledge about the problem.

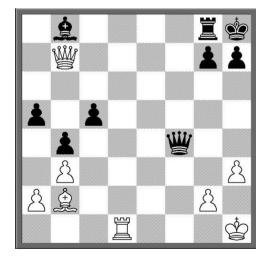
Flow

Vertex-disjoint paths



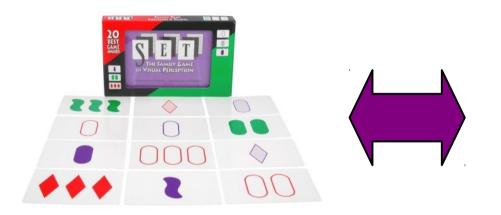
Parameterized Games

- Games and Puzzles usually have many realistic parameters expected to take moderate values.
 - Distinguish between truly hard games and parameterized-efficient games.
- Study short games.



It is White to move and checkmate in 3 moves.

Today



- Multidimentional Matching
- Set Packing
- Edge Dominating Set

• (Edge) Hamiltonian Path

The Computational Complexity of the Game of

Joint work with Michael Lampis (Université Paris Dauphine)

Each card has 4 attributes:

- Symbol
- Shading
- Color
- Number

Each attribute can take one of 3 values:

- Symbol
 - Oval
 - Diamond
 - Squiggle

0 0

Each attribute can take one of 3 values:

- Color
 - Red
 - Green
 - Purple

Each attribute can take one of 3 values:

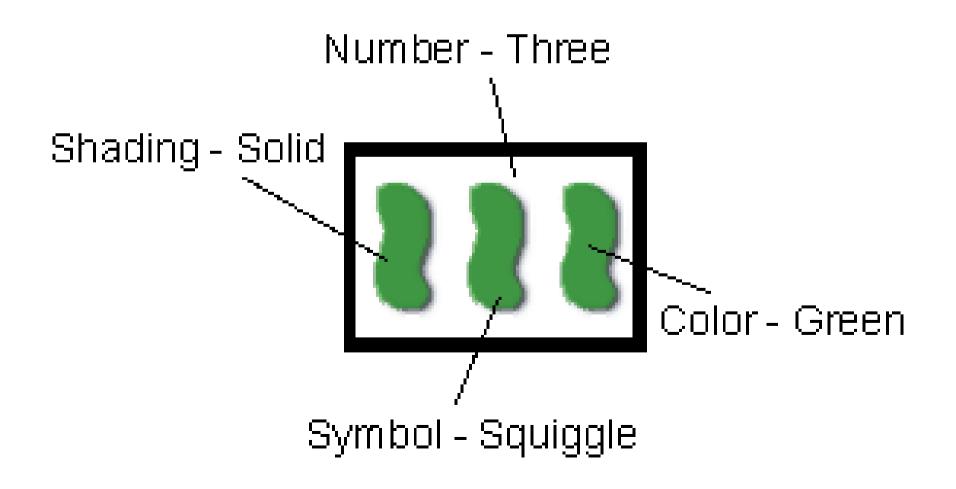
- Shading
 - Blank
 - Stripped
 - Solid

Each attribute can take one of 3 values:

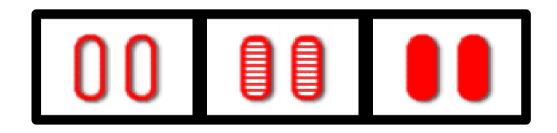
- Number
 - One
 - Two
 - Three

0 00 000

There are $3^4 = 81$ different cards in total (one for each combination of values).

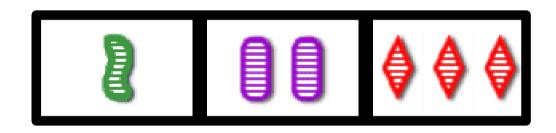


Valid set: 3 cards with values for each attribute being either *all the same* or *all different.*



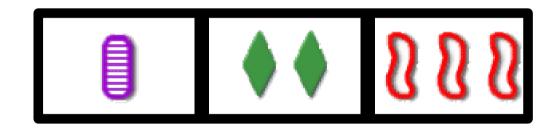
- All have same color;
- all have same symbol;
- all have same number;
- all have different shadings.

Valid set: 3 cards with values for each attribute being either *all the same* or *all different.*



- All have different colors;
- all have different symbols;
- all have different numbers;
- Il have same shading.

Valid set: 3 cards with values for each attribute being either *all the same* or *all different.*

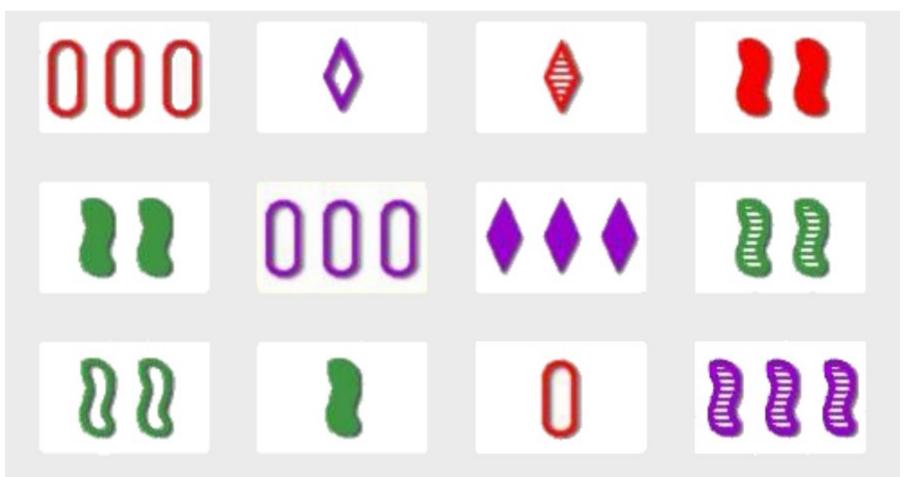


- All have different colors;
- all have different symbols;
- all have different number;
- All have different shadings.

This is not a valid set!

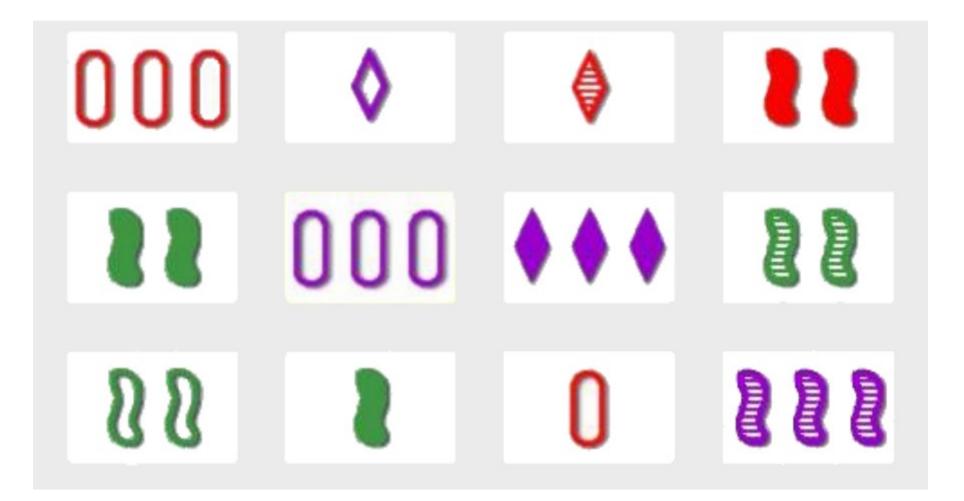
- All have same colors;
- all have different symbols;
- × only 2/3 have same number;
- All have different shadings.

- Deal 12 cards;
- Find a *valid set*.



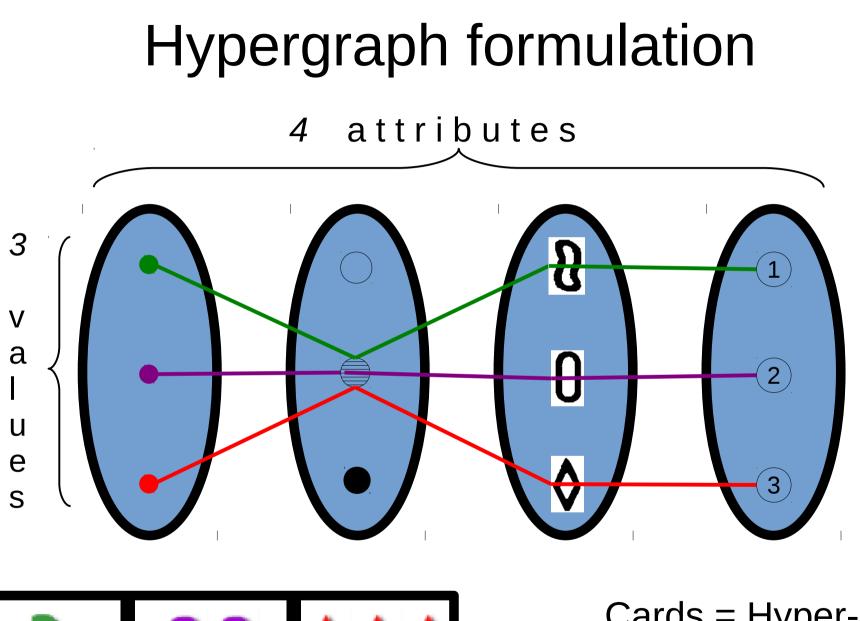
Naive way to find a valid set

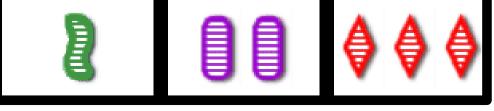
• Search among all possible triples.



Generalization: *k*-1SET

- Input: *m* cards, *n* attributes, *k* values
- Question: Does there exist a valid set of *k* cards with all values the same or all values different?
- In the original game m=12, n=4 and k=3.

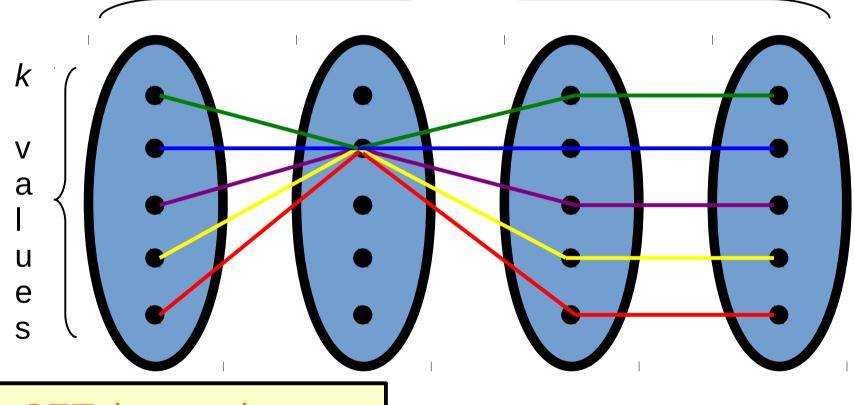




Cards = Hyper-edges Attributes = Dimensions # of Values = size of Parts

Hypergraph formulation

n attributes

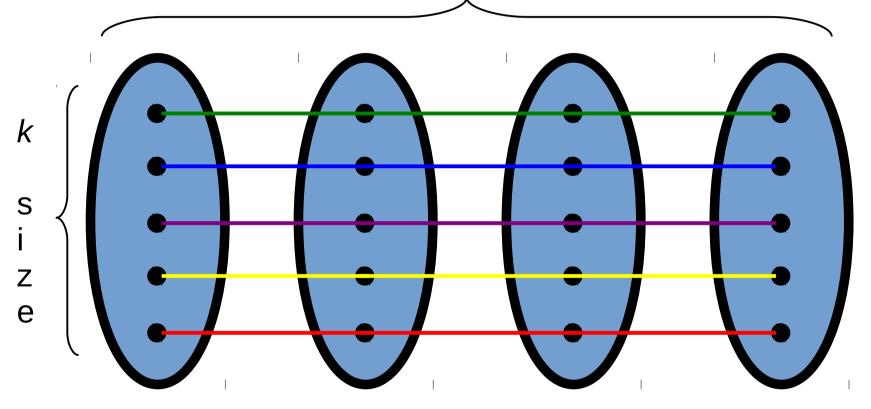


In SET, hyperedges are allowed to overlap as long as they all overlap on the same value.

Cards = Hyper-edges Attributes = Dimensions # of Values = size of Parts

Connection with *n*-Dim. Matching

n dimensions



Perfect *n*-Dimensional Matching: Given a hypergraph H(V,E), pick k hyperedges such that all vertices are covered exactly once.

Formulation difficulties

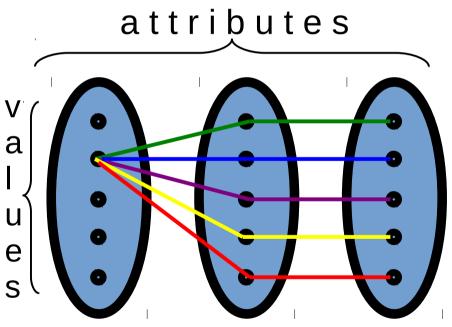
Contradictory goals:

- > Define unbounded generalizations.
- Parameters m, n, k correspond to small integers.

Study parameterized complexity of the game (some of the above parameters are considered much smaller than others).

Complexity Results for k-1SET

- For *m*, *k* unbounded:
 - $-n = 2 \rightarrow P^1$ (find a star or a bipartite matching)
 - $n \ge 3$ → NP-Complete¹

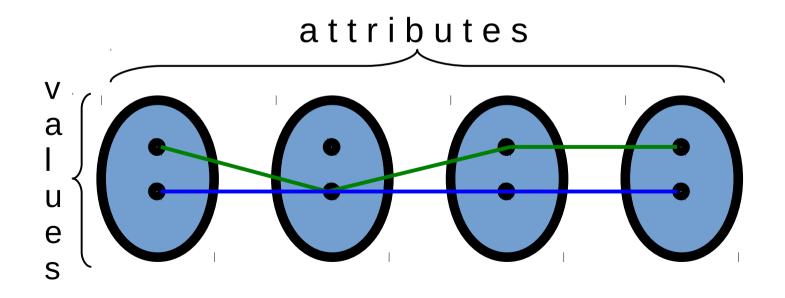


1. Chaudhuri et al 2003.

Complexity Results for k-1SET

• For *m*, *n* unbounded:

-
$$k = 2$$
 → trivial
- k parameter → $\begin{pmatrix} m \\ k \end{pmatrix}$ (XP)



Complexity Results for k-1SET

- For *m*, *n* unbounded:
 - $k = 2 \rightarrow \text{trivial}$ - $k \text{ parameter } \rightarrow \begin{pmatrix} m \\ k \end{pmatrix}$ (XP)

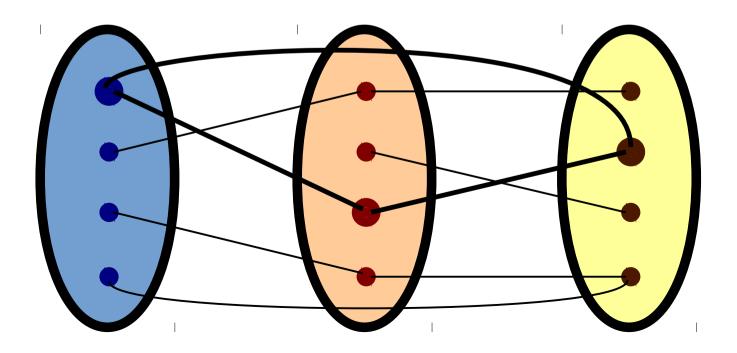
<u>Our results:</u>

k-1SET parameterized by k is W-hard
perfect n-DM parameterized by k is W-hard

Reduction

From *k*-Multicolored Clique

- Input: *k*-partite graph, each part of size *n*
- Question: Does there exist a clique of size *k*?
- Parameter: *k*



Reduction

From *k*-Multicolored Clique

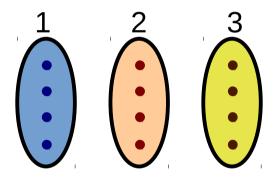
- Input: *k*-partite graph, each part of size *n*
- Question: Does there exist a clique of size *k*?
- Parameter: *k*

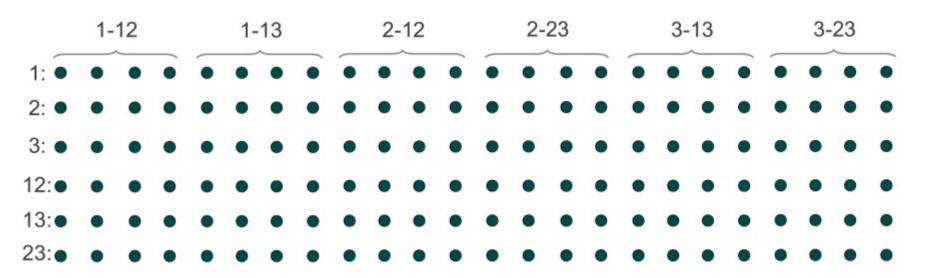
k-Multicolored Clique is W[1]-hard

Construction

The constructed multigraph:

- *n*·*k*(*k*-1) dimensions, in groups of size *n*
- $k + \binom{k}{2}$ possible different values

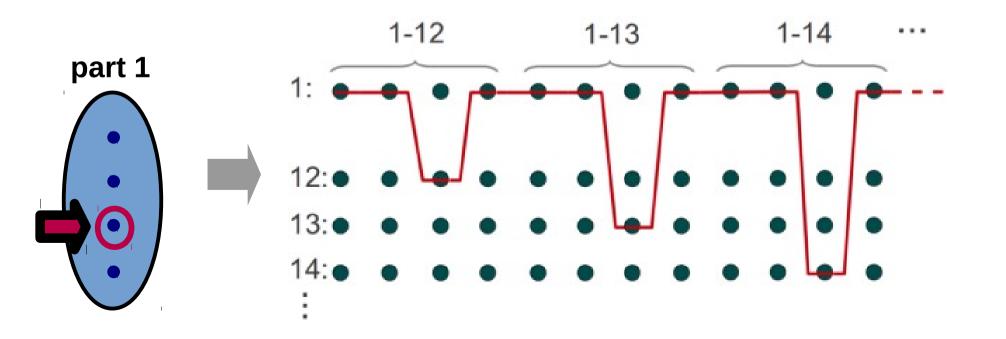




Construction

The constructed multigraph:

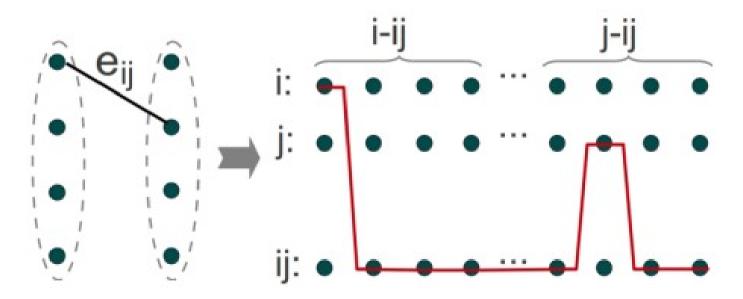
• For each vertex we construct a v-hyperedge. Example shows construction for 3rd vertex from part 1.



Construction

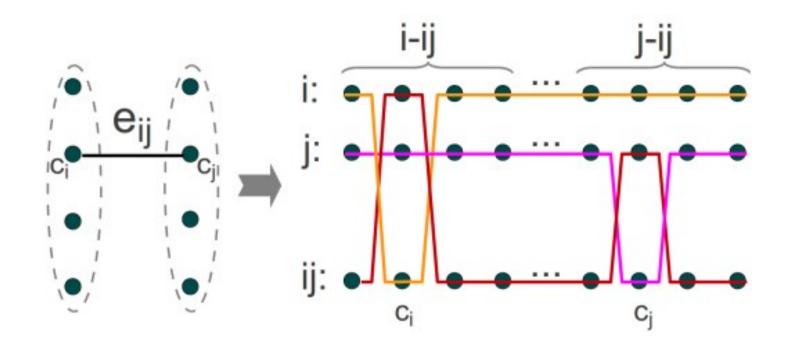
The constructed multigraph:

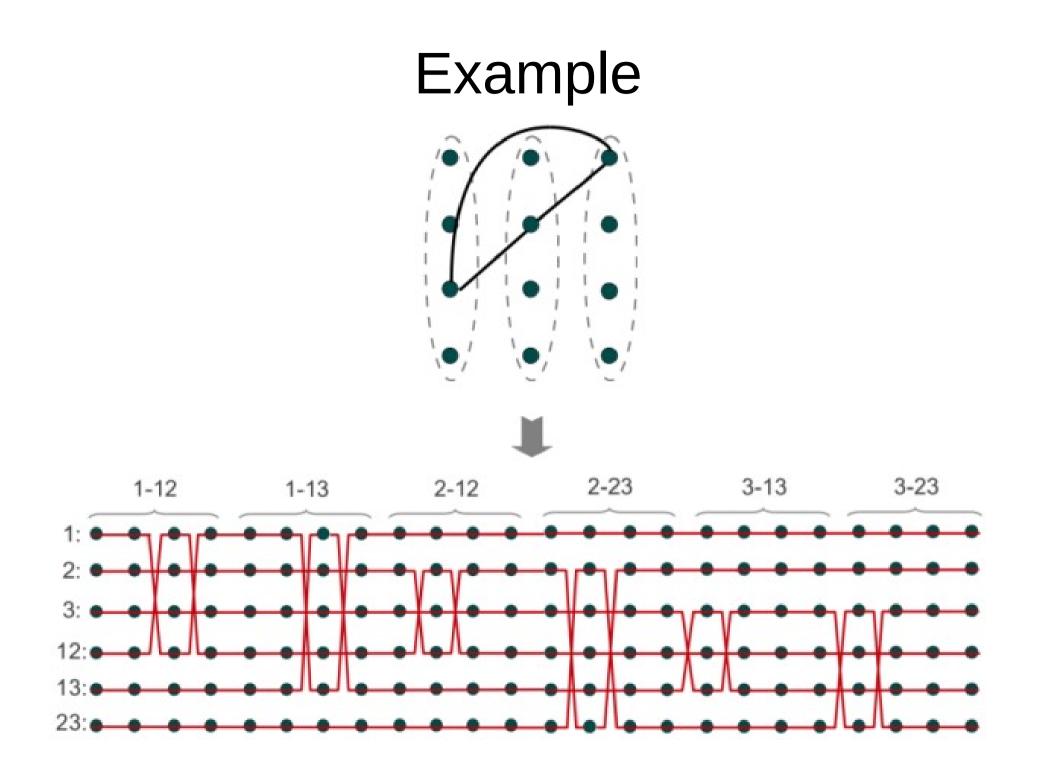
For each edge we construct an e-hyperedge.
 Example shows edge connecting 1st vertex of part i with 2nd vertex of part j.



Correctness

 For each edge e_{ij} between parts i and j, the 3 hyperedges corresponding to i, j and ij cover the respective values entirely.



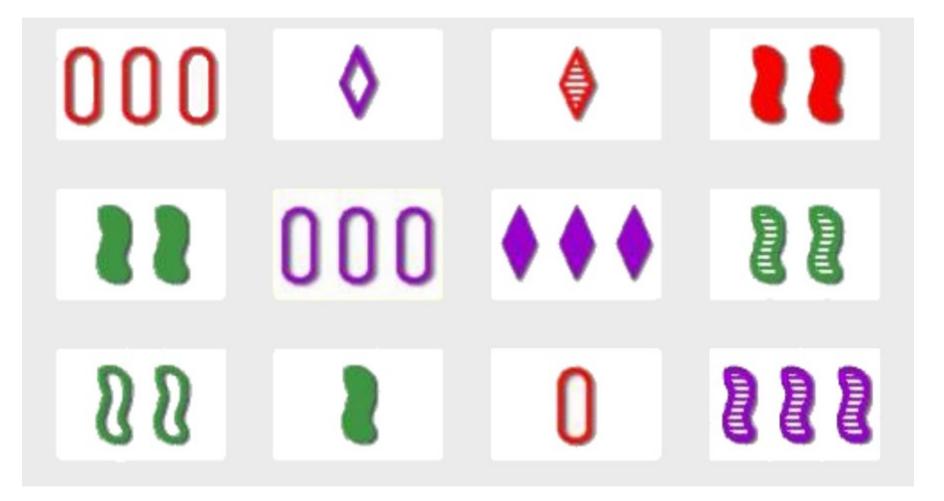


Corollary for *k*-1SET

- Constructed hyperedges cannot all overlap, unless they correspond to the same parts.
- If there exists a valid set, it is also a perfect matching (and vice versa).

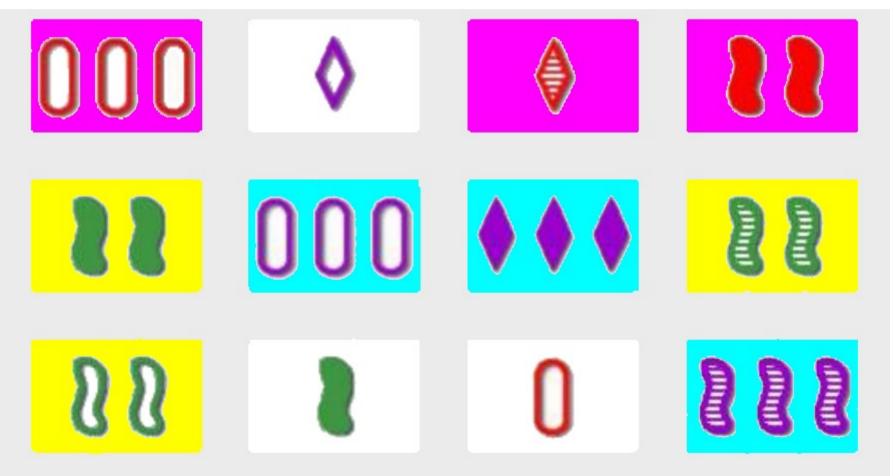
Multi-round variations

• Naive algorithm works for complete enumeration of all co-existing valid sets -without card removal.



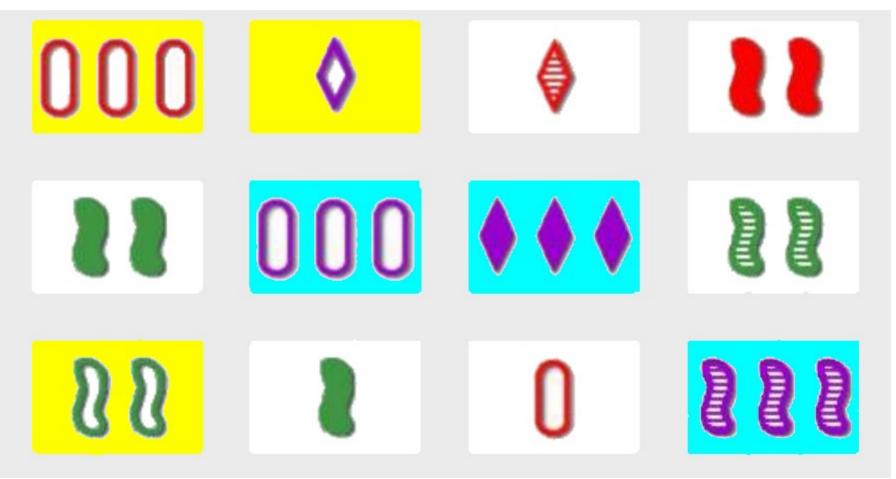
Multi-round variations

- Alternative questions (card removal):
 - Max number of disjoint valid sets?



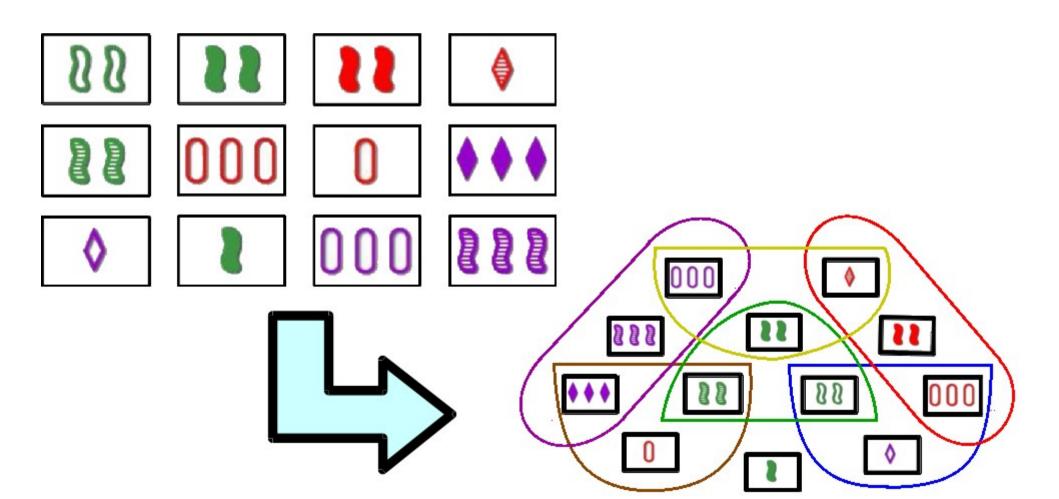
Multi-round variations

- Alternative questions (card removal):
 - Min number of valid sets that destroy all others?



Multi-round variations as hypergraph problems

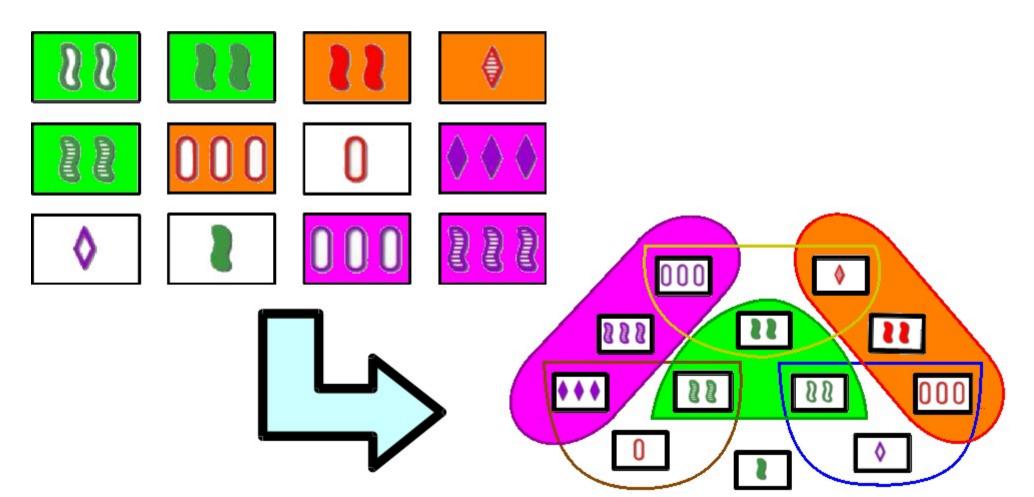
Construct a 3-uniform hypergraph: vertices \leftrightarrow cards, hyperedges \leftrightarrow valid sets.



Max 3-rSet

Problem parameters: m,n unbounded, k=3.

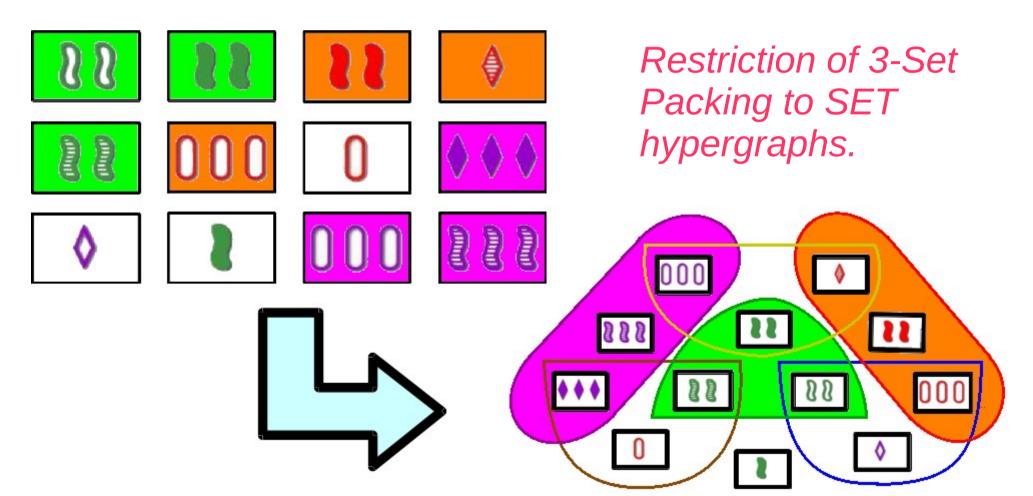
<u>Question</u>: Do there exist (at least) r disjoint valid sets?



Max 3-rSet

Problem parameters: m,n unbounded, k=3.

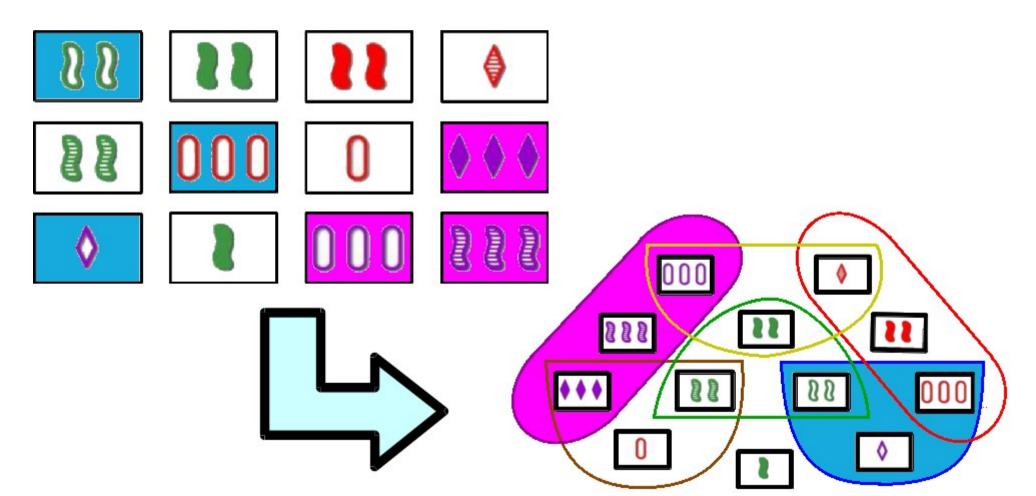
<u>Question</u>: Do there exist (at least) r disjoint valid sets?



Min 3-rSet

Problem parameters: m,n unbounded, k=3.

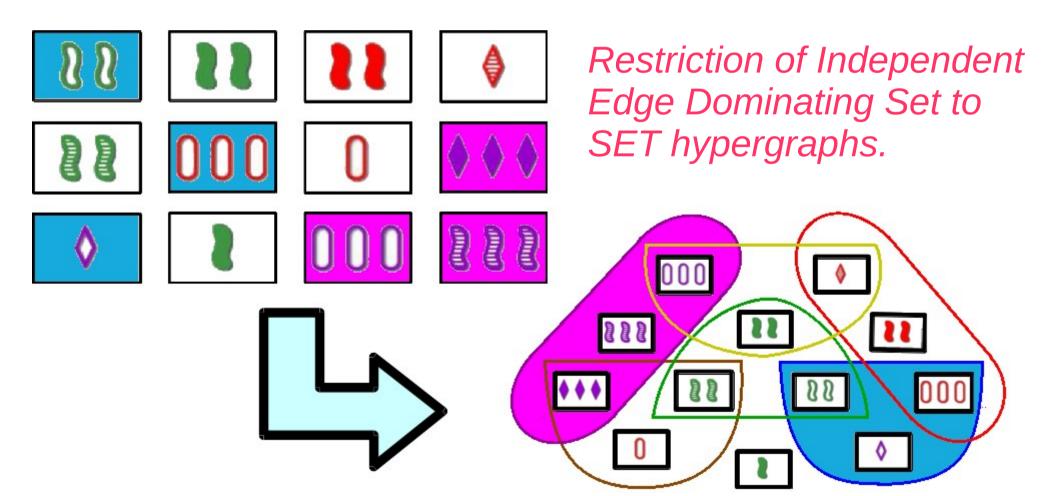
<u>Question</u>: Do there exist (at most) r disjoint valid sets that overlap with all others?



Min 3-rSet

Problem parameters: m,n unbounded, k=3.

<u>Question</u>: Do there exist (at most) r disjoint valid sets that overlap with all others?



Multi-round variations as hypergraph problems

<u>Our results:</u>

Both restrictions remain NP-hard.

Independent Edge Dominating Set on general 3uniform hypergraphs is FPT

 \rightarrow min 3-rSET parameterized by r is FPT

([Fellows et al 2008] 3-Set Packing parameterized by size of solution is FPT).

SET Summary

In connection to SET:

- SET can be reformulated as Perfect Multidimensional Matching, Set Packing, Edge Dominating Set.
- Complexity-wise:
 - One-round SET parameterized by #values is W[1]-hard.
 - Multi-round max & min 3-SET are NP-hard and FPT parameterized by #rounds.

Beyond SET:

- Perfect multidimensional matching parameterized by the size of the dimensions is W[1]-hard.
- Independent edge dominating set parameterized by the size of the dominating set is FPT on 3-uniform h-graphs.

The Game of

Joint with Michael Lampis, Kazuhisa Makino, and Yushi Uno

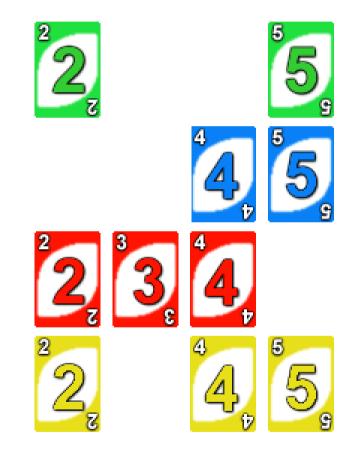
Solitaire UNO - Rules

Deck of cards:

- c colors;
- b ranks.

• Given m cards, discard them one by one following the matching rule.

<u>Matching rule:</u> cards agree either in color or in rank.



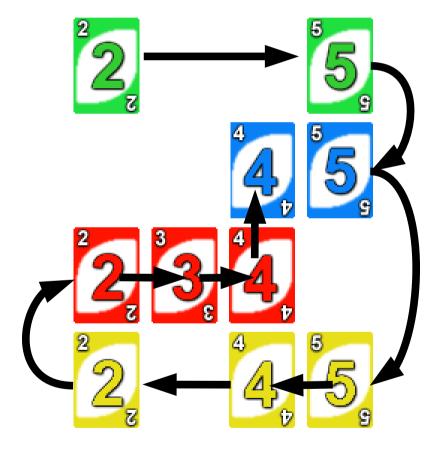
Solitaire UNO - Rules

Deck of cards:

- c colors;
- b ranks.

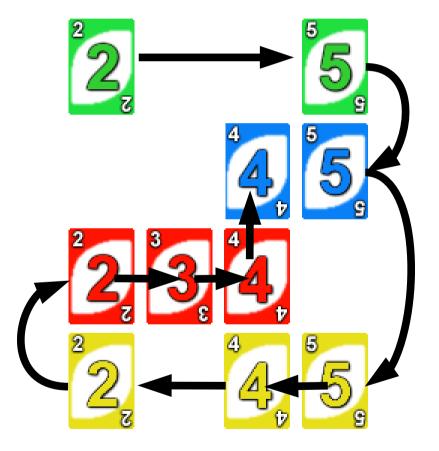
 Given m cards, discard them one by one following the matching rule.

<u>Matching rule:</u> cards agree either in color or in rank.

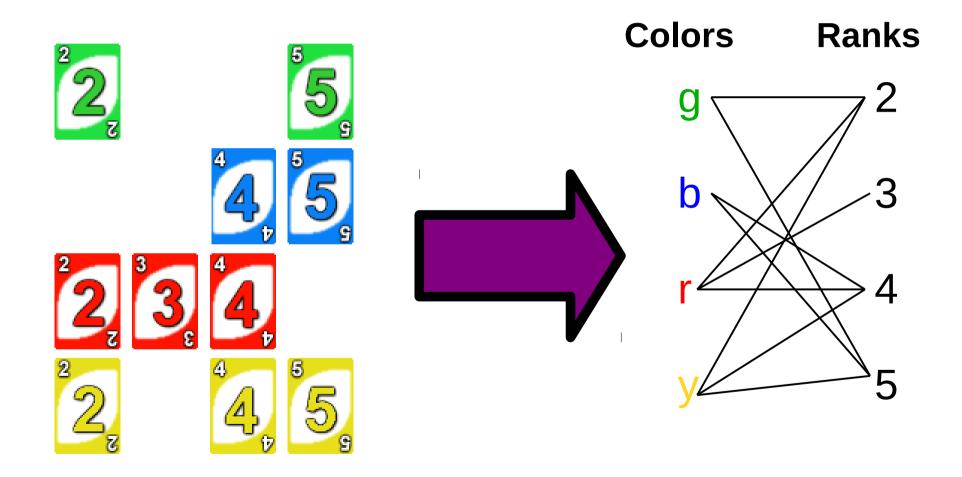


Solution: 2, 5, 5, 5, 4, 2, 2, 3, 4, 4

 Given an m-vertex graph, find a permutation of the vertices such that consecutive vertices are neighbors.

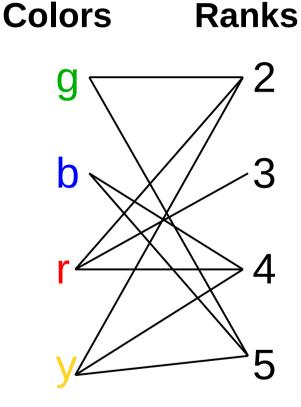


Solution: 2, 5, 5, 5, 4, 2, 2, 3, 4, 4



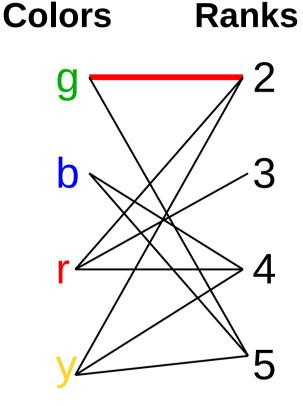
Edge-Hamiltonian Path:

"Ordering of the edges such that consecutive edges share a common attribute."



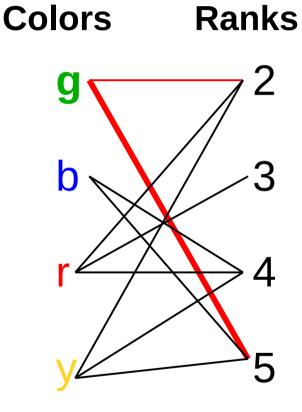
Edge-Hamiltonian Path:

"Ordering of the edges such that consecutive edges share a common attribute."



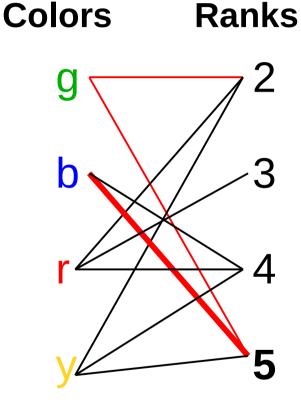
Edge-Hamiltonian Path:

"Ordering of the edges such that consecutive edges share a common attribute."



Edge-Hamiltonian Path:

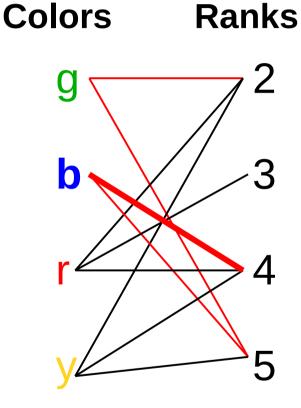
"Ordering of the edges such that consecutive edges share a common attribute."



2, 5, 5,

Edge-Hamiltonian Path:

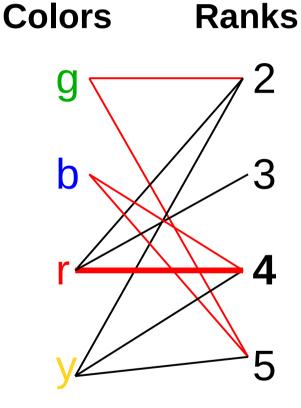
"Ordering of the edges such that consecutive edges share a common attribute."



2, 5, 5, 4,

Edge-Hamiltonian Path:

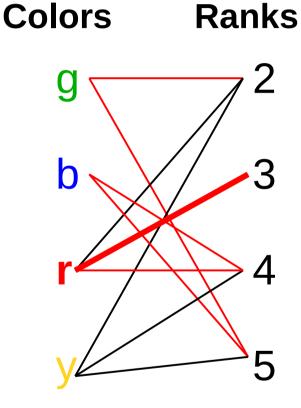
"Ordering of the edges such that consecutive edges share a common attribute."



2, 5, 5, 4, 4,

Edge-Hamiltonian Path:

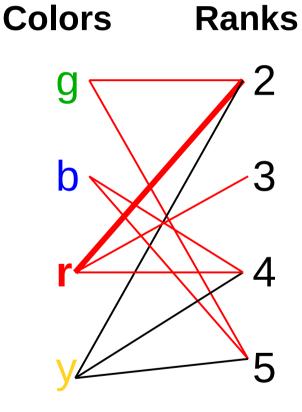
"Ordering of the edges such that consecutive edges share a common attribute."



2, 5, 5, 4, 4, 3,

Edge-Hamiltonian Path:

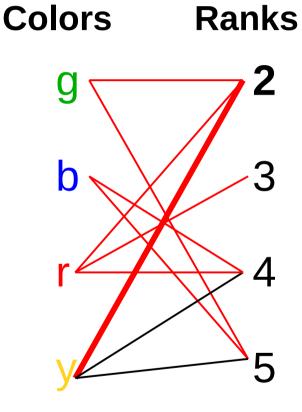
"Ordering of the edges such that consecutive edges share a common attribute."



2, 5, 5, 4, 4, 3, 2,

Edge-Hamiltonian Path:

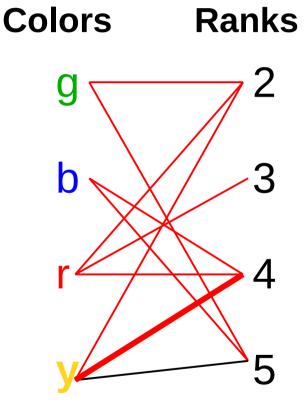
"Ordering of the edges such that consecutive edges share a common attribute."



2, 5, 5, 4, 4, 3, 2, 2,

Edge-Hamiltonian Path:

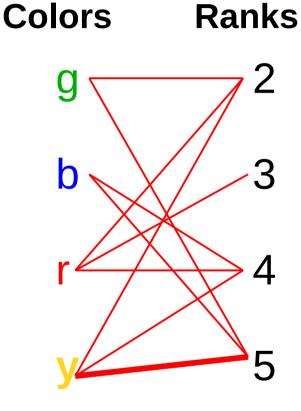
"Ordering of the edges such that consecutive edges share a common attribute."



2, 5, 5, 4, 4, 3, 2, 2, 4,

Edge-Hamiltonian Path:

"Ordering of the edges such that consecutive edges share a common attribute."



2, 5, 5, 4, 4, 3, 2, 2, 4, 5

Solitaire UNO – Previous Results

- [Bertossi 1981]: Edge-Hamiltonian path is NP-complete.
- [Lai, Wei 1993]: Edge-Hamiltonian path is NP-complete on bipartite graphs.
 - \rightarrow [Demaine et al 2014]: Solitaire UNO is NP-complete.

Parameterized Solitaire UNO

In the original game, the number of colors *c* is quite smaller than the number of ranks *b*.

Can we do better under the assumption that c<<b?

→ Study parameterized complexity!

Parameterized Results

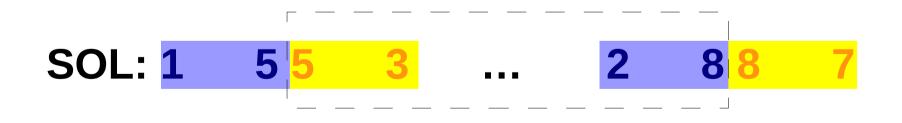
[Demaine et al 2014]: Solitaire UNO with 2 attributes (color & rank) can be solved in $b^{O(c^2)}$ time.

 \rightarrow XP #colors *c* is a parameter.

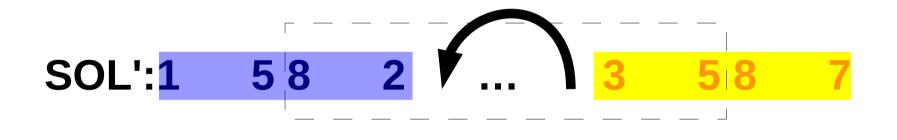
Our results:

- Solitaire UNO with unbounded attributes r is FPT;
- When r = 2, it even admits a cubic kernel.
- EHP is FPT parameterized by the size of a given vertex cover (or hitting set in case of hypergraphs)

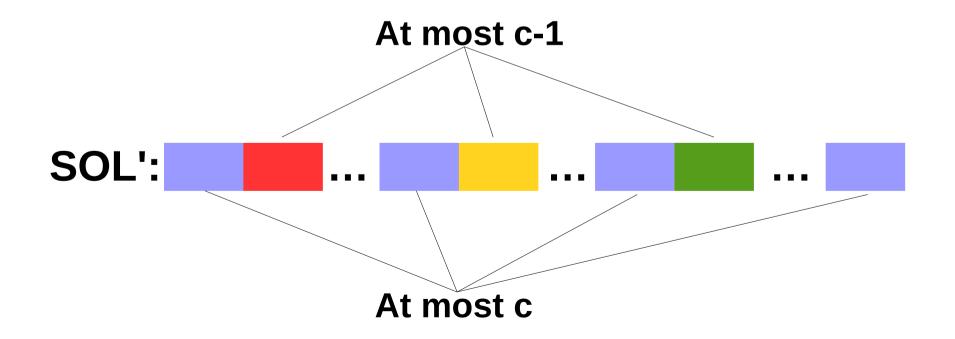
From an EHP **SOL**, we can construct an EHP **SOL'** where each color-group appears at most c times.

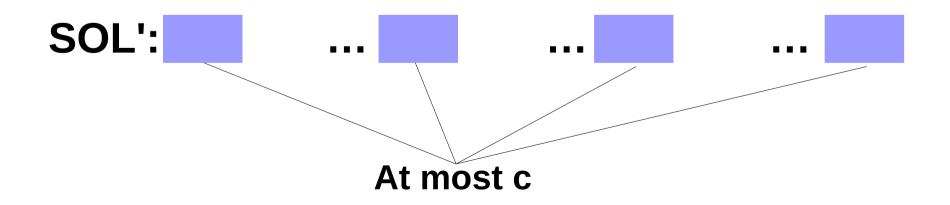


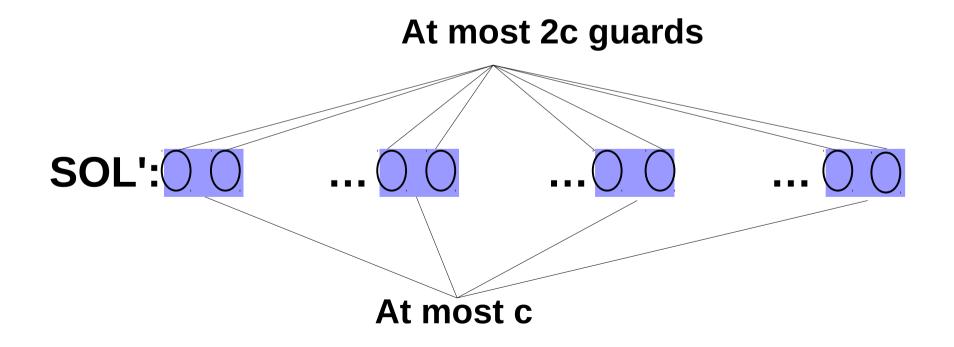
From an EHP **SOL**, we can construct an EHP **SOL'** where each color-group appears at most c times.



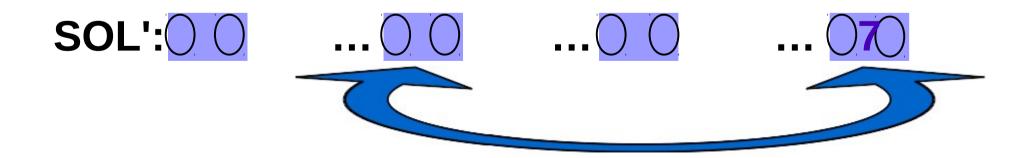
From an EHP **SOL**, we can construct an EHP **SOL'** where each color-group appears at most c times.



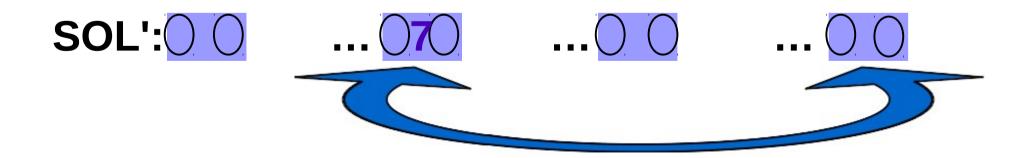




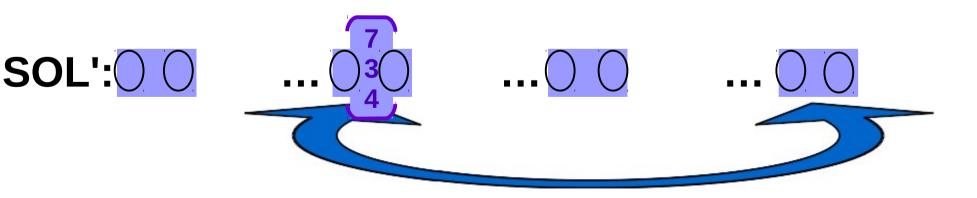
• All other cards can go in-and-out freely.



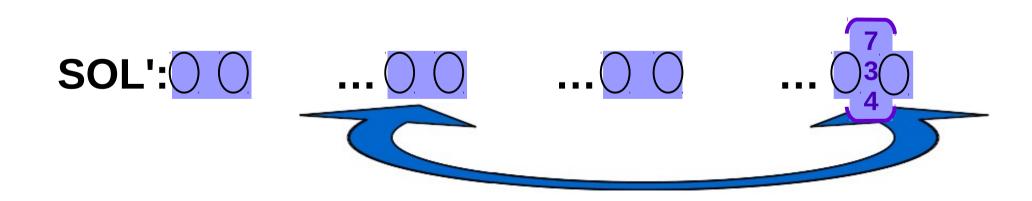
• All other cards can go in-and-out freely.



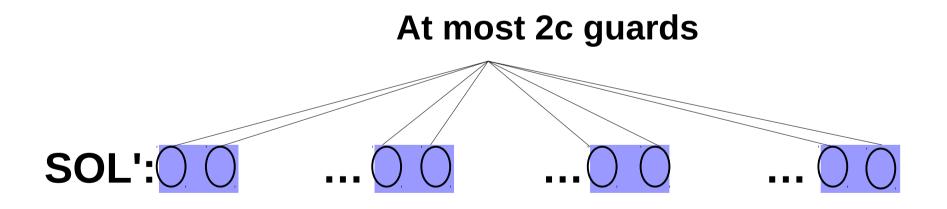
- All other cards can go in-and-out freely.
- Argument works even for unbounded attributes.



- All other cards can go in-and-out freely.
- Argument works even for unbounded attributes.



Solitaire UNO is FPT (sketch)



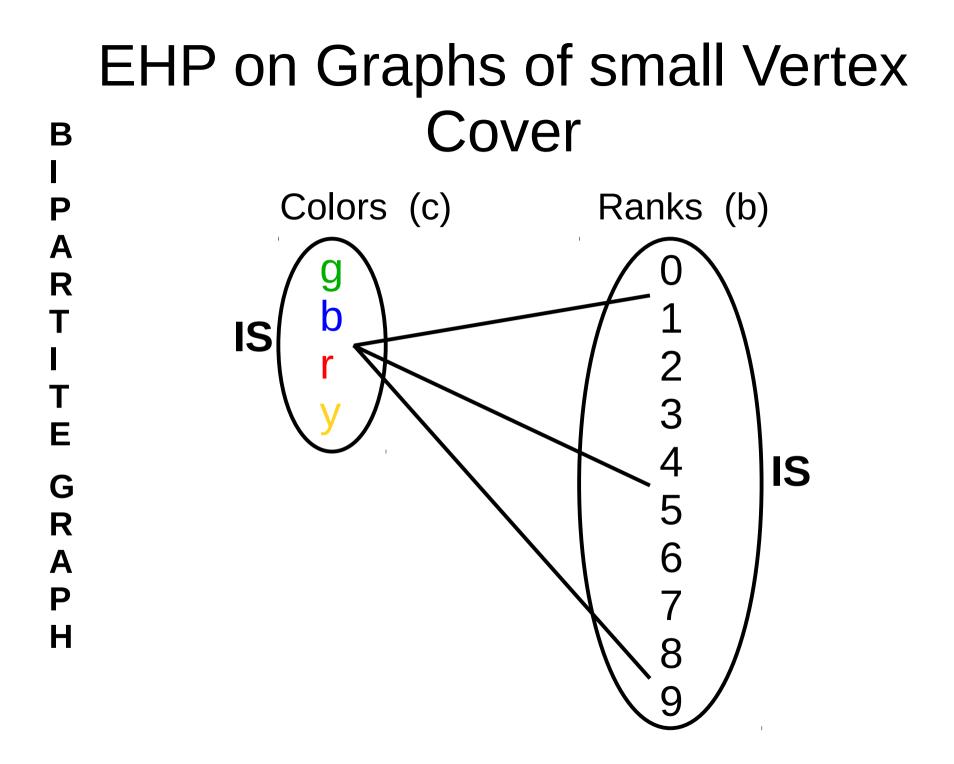
Solitaire UNO is FPT (sketch)

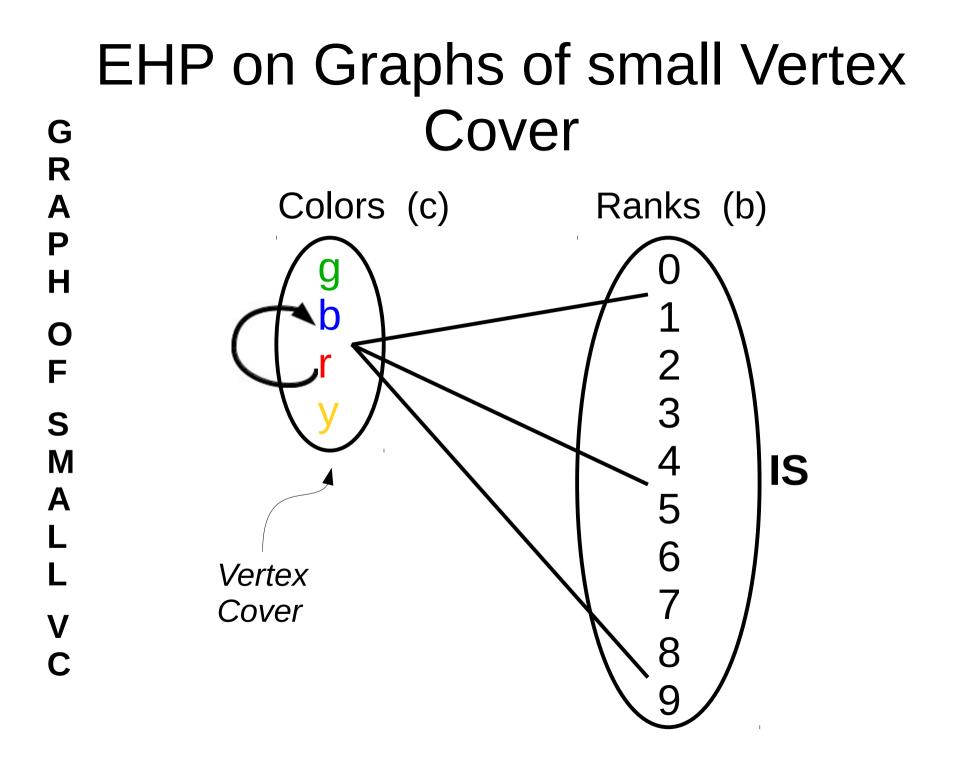
 SOL' has at most 2c² guards (backbone of the solution)

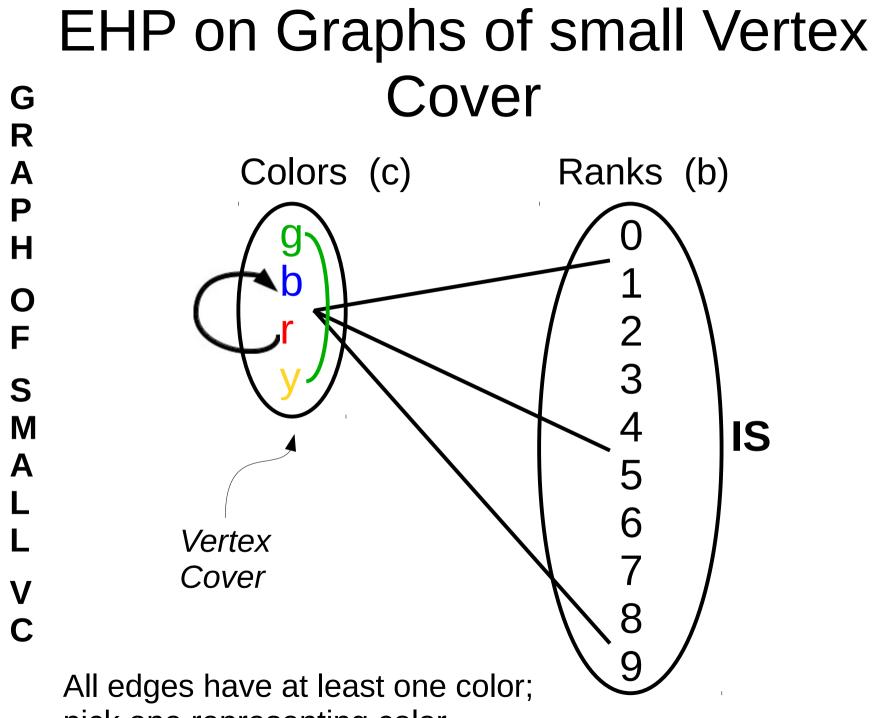
At most 2c guards

At most c colors

SOL':







pick one representing color.

(EHP parameterized by tw and cw)

Treewidth and Cliquewidth

- Structural graph parameters:
 - Treewidth measures how tree-like a graph is.
 - Cliquewidth again measures graph complexity but is more general than tw (graphs of bounded tw also have bounded cw).

Treewidth and Cliquewidth

- Problems expressible in MSO₁ are FPT on graphs of bounded tw, cw.
- tw is algorithmically more tractable than cw:

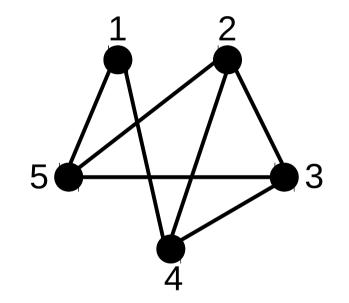
– Problems expressible in MSO₂ logic are tractable for graphs of bounded tw but not always for graphs of bounded cw, ex. (vertex) Hamiltonicity.

<u>Question:</u> Can EHP be expressed in some MSO?

Dominating Eulerian Subgraph

"Find a connected subgraph G' of G, st:

- 1. G' is Eulerian;
- 2. All remaining edges of G are covered by a vertex in G'."



Harary & Nash-Williams (1965): Edge-Hamiltonian Path is equivalent with Dominating Eulerian Subgraph.

Dominating Eulerian Subgraph

"Find a connected subgraph G' of G, st:

- 1. G' is Eulerian;
- 2. All remaining edges of G are covered by a vertex in G'."

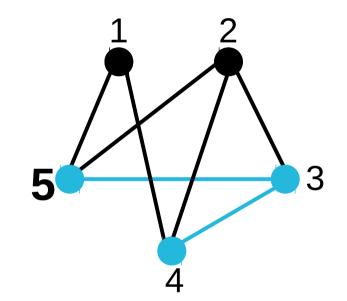


Eulerian path: 53, 34

Dominating Eulerian Subgraph

"Find a connected subgraph G' of G, st:

- 1. G' is Eulerian;
- 2. All remaining edges of G are covered by a vertex in G'."

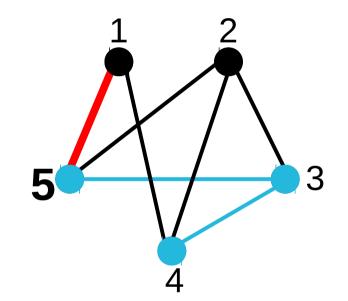


Eulerian path: 53, 34 Edge-Hamiltonian Path:

Dominating Eulerian Subgraph

"Find a connected subgraph G' of G, st:

- 1. G' is Eulerian;
- 2. All remaining edges of G are covered by a vertex in G'."

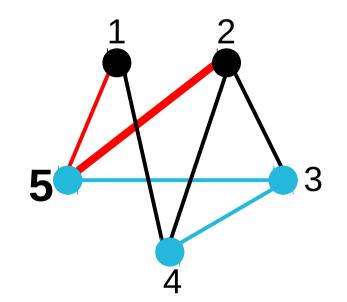


Eulerian path: 53, 34 Edge-Hamiltonian Path: 51

Dominating Eulerian Subgraph

"Find a connected subgraph G' of G, st:

- 1. G' is Eulerian;
- 2. All remaining edges of G are covered by a vertex in G'."

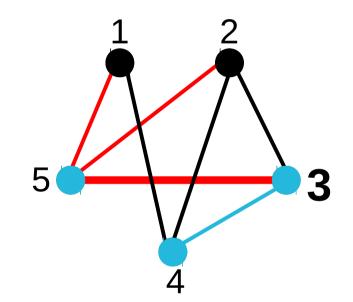


Eulerian path: 53, 34 Edge-Hamiltonian Path: 51, 52

Dominating Eulerian Subgraph

"Find a connected subgraph G' of G, st:

- 1. G' is Eulerian;
- 2. All remaining edges of G are covered by a vertex in G'."

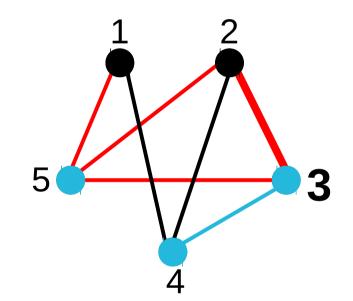


Eulerian path: <mark>53</mark>, 34 Edge-Hamiltonian Path: 51, 52, 53

Dominating Eulerian Subgraph

"Find a connected subgraph G' of G, st:

- 1. G' is Eulerian;
- 2. All remaining edges of G are covered by a vertex in G'."

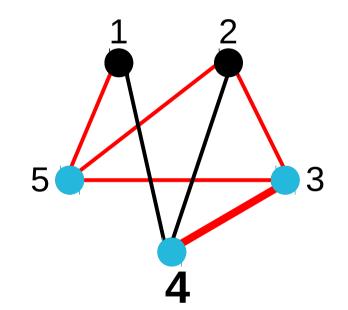


Eulerian path: 53, 34 Edge-Hamiltonian Path: 51, 52, 53, 32

Dominating Eulerian Subgraph

"Find a connected subgraph G' of G, st:

- 1. G' is Eulerian;
- 2. All remaining edges of G are covered by a vertex in G'."

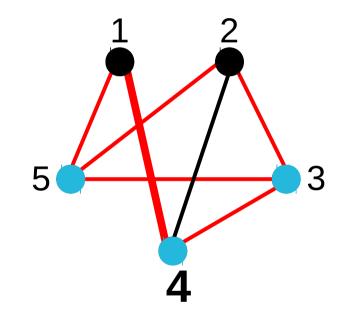


Eulerian path: 53, 34 Edge-Hamiltonian Path: 51, 52, 53, 32, 34

Dominating Eulerian Subgraph

"Find a connected subgraph G' of G, st:

- 1. G' is Eulerian;
- 2. All remaining edges of G are covered by a vertex in G'."

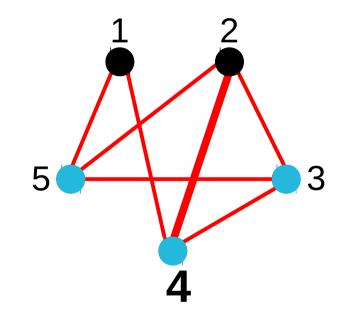


Eulerian path: 53, 34 Edge-Hamiltonian Path: 51, 52, 53, 32, 34, 41

Dominating Eulerian Subgraph

"Find a connected subgraph G' of G, st:

- 1. G' is Eulerian;
- 2. All remaining edges of G are covered by a vertex in G'."

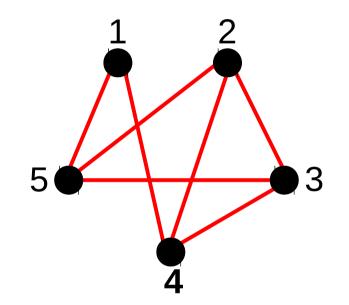


Eulerian path: 53, 34 Edge-Hamiltonian Path: 51, 52, 53, 32, 34, 41, 42

Dominating Eulerian Subgraph

"Find a connected subgraph G' of G, st:

- 1. G' is Eulerian;
- 2. All remaining edges of G are covered by a vertex in G'."



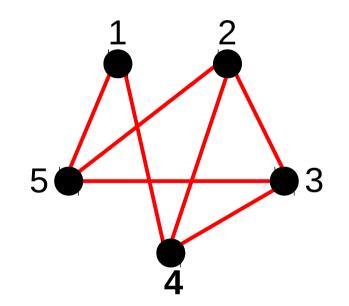
All the above properties are expressible in CMSO₂.

Dominating Eulerian Subgraph (thus EHP) parameterized by tw is FPT.

Dominating Eulerian Subgraph

"Find a connected subgraph G' of G, st:

- 1. G' is Eulerian;
- 2. All remaining edges of G are covered by a vertex in G'."



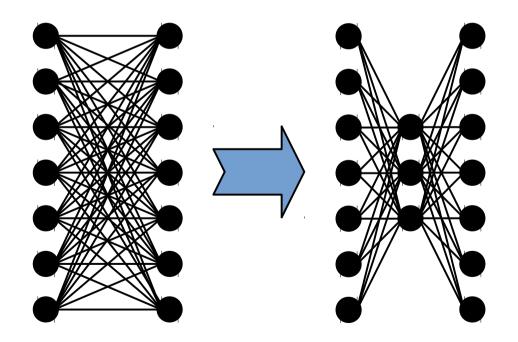
All the above properties are expressible in CMSO₂.

Dominating Eulerian Subgraph (thus EHP) parameterized by tw is FPT.

EHP parameterized by cw is FPT.

EHP parameterized by cw is FPT

Theorem (Gursky & Wanke 2000): If G has cw k and does not contain $K_{t,t}$ as a subgraph, then G has tw at most 3kt.



(Closing Parenthesis)

UNO Summary

In connection to UNO:

- UNO can be reformulated as (Edge) Hamiltonian Path.
- Complexity-wise:
 - UNO parameterized by the size of one of the card's attributes is FPT.
 - For 2 attributes, it admits a cubic kernel.

Beyond UNO:

- EHP parameterized by |VC| admits a cubic kernel.
- EHP on hypergraphs parameterized by [HS] is FPT.
- EHP parameterized by tw & cw is FPT.

TI NK YOU!

I) Michael Lampis and Valia Mitsou: The Computational Complexity of the Game of Set and its Theoretical Applications. *LATIN 2014.*

II) Michael Lampis, Kazuhisa Makino, Valia Mitsou, and Yushi Uno: **Parameterized Edge Hamiltonicity.** *WG 2014.*