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We study...

...games and puzzles which can be naturally 
re-formulated as variations of well-known graph 
problems. 

Flow Vertex-disjoint paths 



Who cares?

● Borrow known complexity results regarding the 
problem to prove the complexity of the game.

● Use the intuition provided by the game to 
advance knowledge about the problem. 

Flow Vertex-disjoint paths 



Parameterized Games

➢ Games and Puzzles usually have many realistic 
parameters expected to take moderate values.

➢ Distinguish between truly hard games and 

parameterized-efficient games.

➢ Study short games.

It is White to move and 
checkmate in 3 moves. 



Today

● Multidimentional Matching

● Set Packing

● Edge Dominating Set

 

● (Edge) Hamiltonian Path



The Computational Complexity  
of the Game of

Joint work with Michael Lampis 
(Université Paris Dauphine)



The Game of Set - Rules

Each card has 4 attributes:

– Symbol

– Shading

– Color

– Number



The Game of Set - Rules

Each attribute can take one of 3 values:

– Symbol
● Oval
● Diamond
● Squiggle



The Game of Set - Rules

Each attribute can take one of 3 values:

– Color
● Red
● Green
● Purple



The Game of Set - Rules

Each attribute can take one of 3 values:

– Shading
● Blank
● Stripped
● Solid



The Game of Set - Rules

Each attribute can take one of 3 values:

– Number
● One
● Two
● Three



The Game of Set - Rules

There are 34 = 81 different cards in total 
(one for each combination of values).



The Game of Set - Rules

Valid set: 3 cards with values for each attribute being 
either all the same or all different.

✔ All have same color; 

✔ all have same symbol; 

✔ all have same number; 

✔ all have different shadings.



The Game of Set - Rules

Valid set: 3 cards with values for each attribute being 
either all the same or all different.

✔ All have different colors; 

✔ all have different symbols; 

✔ all have different numbers; 

✔ all have same shading.



The Game of Set - Rules

Valid set: 3 cards with values for each attribute being 
either all the same or all different.

✔ All have different colors; 

✔ all have different symbols; 

✔ all have different number; 

✔ all have different shadings.



The Game of Set - Rules

This is not a valid set!

✔ All have same colors; 

✔ all have different symbols;

only 2/3 have same number; 

✔ all have different shadings.

×



The Game of Set - Rules

● Deal 12 cards;

● Find a valid set.



Naive way to find a valid set

● Search among all possible triples.



Generalization: k-1SET

● Input: m cards, n attributes, k values 

● Question: Does there exist a valid set of k cards with 
all values the same or all values different?

● In the original game m=12, n=4 and k=3.



Hypergraph formulation

1

Cards = Hyper-edges       

Attributes = Dimensions
# of Values = size of Parts

4    a t t r i b u t e s
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Hypergraph formulation

Cards = Hyper-edges       

Attributes = Dimensions
# of Values = size of Parts

n    a t t r i b u t e s

In SET, hyperedges are 
allowed to overlap as 
long as they all overlap 
on the same value.

k
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Connection with n-Dim. Matching
n    d i m e n s i o n s

Perfect n-Dimensional Matching:
Given a hypergraph H(V,E), pick k hyperedges
such that all vertices are covered exactly once.

k

s
i
z
e



Formulation difficulties

Contradictory goals:
➢Define unbounded generalizations. 
➢Parameters m, n, k correspond to small integers. 

Study parameterized complexity of the 
game (some of the above parameters are 
considered much smaller than others).



Complexity Results for k-1SET

● For m, k unbounded: 

– n = 2 → P1 (find a star or a bipartite matching)

– n ≥ 3 → NP-Complete1 

 

1. Chaudhuri et al 2003.
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Complexity Results for k-1SET

● For m, n unbounded:

– k = 2 → trivial

– k parameter →        (XP)

k-1SET parameterized by k is W-hard

perfect n-DM parameterized by k is W-hard
 

(mk )
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Complexity Results for k-1SET

● For m, n unbounded:

– k = 2 → trivial

– k parameter →        (XP)

Our results:

k-1SET parameterized by k is W-hard

perfect n-DM parameterized by k is W-hard
 

(mk )



Reduction

From k-Multicolored Clique

● Input: k-partite graph, each part of size n

● Question: Does there exist a clique of size k?

● Parameter: k

 



Reduction

From k-Multicolored Clique

● Input: k-partite graph, each part of size n

● Question: Does there exist a clique of size k?

● Parameter: k

k-Multicolored Clique is W[1]-hard 



Construction

The constructed multigraph: 

● n∙k(k-1) dimensions, in groups of size n

● k+      possible different values

 

k

2
1 2 3



Construction

The constructed multigraph: 

● For each vertex we construct a v-hyperedge.

Example shows construction for 3rd vertex from part 1.

 

part 1



Construction

The constructed multigraph: 

● For each edge we construct an e-hyperedge.

Example shows edge connecting 1st vertex of part i 
with 2nd vertex of part j. 



Correctness

● For each edge eij between parts i and j, the 3 
hyperedges corresponding to i, j and ij cover the 
respective values entirely. 



Example



Corollary for k-1SET

● Constructed hyperedges cannot all overlap, unless 
they correspond to the same parts.

● If there exists a valid set, it is also a perfect matching 
(and vice versa).

k-1SET parameterized by k is W-hard



Multi-round variations

● Naive algorithm works for complete enumeration of all 
co-existing valid sets -without card removal.



Multi-round variations

● Alternative questions (card removal): 

– Max number of disjoint valid sets?



Multi-round variations

● Alternative questions (card removal):  

– Min number of valid sets that destroy all others?



Multi-round variations as 
hypergraph problems

Construct a 3-uniform hypergraph:                
vertices ↔ cards, hyperedges ↔ valid sets.



Max 3-rSet
Problem parameters: m,n unbounded, k=3.

Question: Do there exist (at least) r disjoint valid 
sets? 



Max 3-rSet
Problem parameters: m,n unbounded, k=3.

Question: Do there exist (at least) r disjoint valid 
sets?

Restriction of 3-Set 
Packing to SET 
hypergraphs. 



Min 3-rSet
Problem parameters: m,n unbounded, k=3.

Question: Do there exist (at most) r disjoint valid sets 
that overlap with all others?



Min 3-rSet
Problem parameters: m,n unbounded, k=3.

Question: Do there exist (at most) r disjoint valid sets 
that overlap with all others?

Restriction of Independent 
Edge Dominating Set to 
SET hypergraphs.



Multi-round variations as 
hypergraph problems

Our results:

Both restrictions remain NP-hard.

Independent Edge Dominating Set on general 3-
uniform hypergraphs is FPT

→min 3-rSET parameterized by r is FPT 

([Fellows et al 2008] 3-Set Packing parameterized by 
size of solution is FPT). 



SET Summary
In connection to SET:

● SET can be reformulated as Perfect Multidimensional 
Matching, Set Packing, Edge Dominating Set.

● Complexity-wise:
– One-round SET parameterized by #values is W[1]-hard.

– Multi-round max & min 3-SET are NP-hard and FPT 
parameterized by #rounds.

Beyond SET:
● Perfect multidimensional matching parameterized by the 

size of the dimensions is W[1]-hard.
● Independent edge dominating set parameterized by the 

size of the dominating set is FPT on 3-uniform h-graphs.



The Game of

Joint with Michael Lampis, Kazuhisa Makino, and Yushi Uno



Solitaire UNO - Rules

Deck of cards:
● c colors;
● b ranks.

● Given m cards, discard them 
one by one following the 
matching rule.

Matching rule: cards agree 
either in color or in rank.



Solitaire UNO - Rules

Deck of cards:
● c colors;
● b ranks.

● Given m cards, discard them 
one by one following the 
matching rule.

Matching rule: cards agree 
either in color or in rank. 

Solution: 2, 5, 5, 5, 4, 2, 2, 3, 4, 4  



Solitaire UNO as Hamiltonicity

● Given an m-vertex graph, 
find a permutation of the 
vertices such that 
consecutive vertices are 
neighbors. 

Solution: 2, 5, 5, 5, 4, 2, 2, 3, 4, 4  



Solitaire UNO as Edge-Hamiltonicity
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Solitaire UNO as Edge-Hamiltonicity
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Edge-Hamiltonian Path:

“Ordering of the edges such 
that consecutive edges 
share a common attribute.”

Colors Ranks



Solitaire UNO as Edge-Hamiltonicity
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Edge-Hamiltonian Path:

“Ordering of the edges such 
that consecutive edges 
share a common attribute.”
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Solitaire UNO as Edge-Hamiltonicity
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that consecutive edges 
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Solitaire UNO as Edge-Hamiltonicity
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that consecutive edges 
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Solitaire UNO as Edge-Hamiltonicity
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“Ordering of the edges such 
that consecutive edges 
share a common attribute.”
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Solitaire UNO as Edge-Hamiltonicity
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Solitaire UNO as Edge-Hamiltonicity
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“Ordering of the edges such 
that consecutive edges 
share a common attribute.”
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Solitaire UNO as Edge-Hamiltonicity
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Solitaire UNO as Edge-Hamiltonicity
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that consecutive edges 
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Solitaire UNO as Edge-Hamiltonicity
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that consecutive edges 
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Solitaire UNO as Edge-Hamiltonicity

g
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2
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Edge-Hamiltonian Path:

“Ordering of the edges such 
that consecutive edges 
share a common attribute.”

2, 5, 5, 4, 4, 3, 2, 2, 4, 5

Colors Ranks



Solitaire UNO – Previous Results

● [Bertossi 1981]: Edge-Hamiltonian path is NP-complete.

● [Lai, Wei 1993]: Edge-Hamiltonian path is NP-complete 
on bipartite graphs.

→ [Demaine et al 2014]: Solitaire UNO is NP-complete.



Parameterized Solitaire UNO

In the original game, the number of colors c is quite 
smaller than the number of ranks b.

Can we do better under the assumption that c<<b?

→ Study parameterized complexity! 

1 2 3 4 5 6 7 8 9 0

c      b



Parameterized Results

[Demaine et al 2014]: Solitaire UNO with 2 attributes 
(color & rank) can be solved in b^{O(c2)} time. 

→ XP #colors c is a parameter.

Our results:

Solitaire UNO with unbounded attributes r is FPT; 

When r = 2, it even admits a cubic kernel.

EHP is FPT parameterized by the size of a given 
vertex cover (or hitting set in case of hypergraphs)



Solitaire UNO is FPT (sketch)

From an EHP SOL, we can construct an EHP 
SOL' where each color-group appears at most 
c times. 

SOL: 1      5 5      3      …       2      8 8      7 
   



Solitaire UNO is FPT (sketch)

From an EHP SOL, we can construct an EHP 
SOL' where each color-group appears at most 
c times. 

SOL':1      5 8      2      …       3      5 8      7 
   



Solitaire UNO is FPT (sketch)

From an EHP SOL, we can construct an EHP 
SOL' where each color-group appears at most 
c times. 

SOL':              …               …   …    

At most c

At most c-1



Solitaire UNO is FPT (sketch)

SOL':              …               …   …    

At most c



Solitaire UNO is FPT (sketch)

SOL':              …               …   …    

At most c

At most 2c guards



Solitaire UNO is FPT (sketch)

● All other cards can go in-and-out freely.

SOL':              …               …   …    7



Solitaire UNO is FPT (sketch)

● All other cards can go in-and-out freely.

SOL':              …               …   …    7



Solitaire UNO is FPT (sketch)

● All other cards can go in-and-out freely.
● Argument works even for unbounded attributes.

SOL':              …               …   …    
7
3
4



Solitaire UNO is FPT (sketch)

● All other cards can go in-and-out freely.
● Argument works even for unbounded attributes.

SOL':              …               …   …    
7
3
4



Solitaire UNO is FPT (sketch)

SOL':              …               …   …    

At most 2c guards



Solitaire UNO is FPT (sketch)

● SOL' has at most 2c2 guards 

(backbone of the solution)

SOL':              …               …   …    

At most c colors

At most 2c guards



EHP on Graphs of small Vertex 
Cover
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EHP on Graphs of small Vertex 
Cover
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EHP on Graphs of small Vertex 
Cover

Colors  (c) Ranks  (b)
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All edges have at least one color; 
pick one representing color.
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Parenthesis:
EHP parameterized by tw and cw



Treewidth and Cliquewidth

● Structural graph parameters:

– Treewidth measures how tree-like a graph is.

– Cliquewidth again measures graph complexity 
but is more general than tw (graphs of bounded 
tw also have bounded cw).



Treewidth and Cliquewidth

● Problems expressible in MSO1 are FPT on graphs 
of bounded tw, cw.

● tw is algorithmically more tractable than cw:

– Problems expressible in MSO2 logic are tractable 
for graphs of bounded tw but not always for graphs 
of bounded cw, ex. (vertex) Hamiltonicity.

Question: Can EHP be expressed in some MSO?



1 2
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Edge-Hamiltonian Path as 
Dominating Eulerian Subgraph

Harary & Nash-Williams (1965): Edge-Hamiltonian Path 
is equivalent with Dominating Eulerian Subgraph.  

Dominating Eulerian Subgraph

“Find a connected subgraph G' 
of G, st:

1. G' is Eulerian;

2. All remaining edges of G are 
covered by a vertex in G'.”
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Edge-Hamiltonian Path as 
Dominating Eulerian Subgraph

Eulerian path: 53, 34 

Dominating Eulerian Subgraph

“Find a connected subgraph G' 
of G, st:

1. G' is Eulerian;

2. All remaining edges of G are 
covered by a vertex in G'.”



1 2

3

4

5

Edge-Hamiltonian Path as 
Dominating Eulerian Subgraph

Eulerian path: 53, 34
Edge-Hamiltonian Path:  

Dominating Eulerian Subgraph

“Find a connected subgraph G' 
of G, st:

1. G' is Eulerian;

2. All remaining edges of G are 
covered by a vertex in G'.”
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Edge-Hamiltonian Path as 
Dominating Eulerian Subgraph

Eulerian path: 53, 34
Edge-Hamiltonian Path: 51  

Dominating Eulerian Subgraph

“Find a connected subgraph G' 
of G, st:

1. G' is Eulerian;

2. All remaining edges of G are 
covered by a vertex in G'.”
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Edge-Hamiltonian Path as 
Dominating Eulerian Subgraph

Eulerian path: 53, 34
Edge-Hamiltonian Path: 51, 52  

Dominating Eulerian Subgraph

“Find a connected subgraph G' 
of G, st:

1. G' is Eulerian;

2. All remaining edges of G are 
covered by a vertex in G'.”
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Edge-Hamiltonian Path as 
Dominating Eulerian Subgraph

Eulerian path: 53, 34
Edge-Hamiltonian Path: 51, 52, 53  

Dominating Eulerian Subgraph

“Find a connected subgraph G' 
of G, st:

1. G' is Eulerian;

2. All remaining edges of G are 
covered by a vertex in G'.”
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Edge-Hamiltonian Path as 
Dominating Eulerian Subgraph

Eulerian path: 53, 34
Edge-Hamiltonian Path: 51, 52, 53, 32  

Dominating Eulerian Subgraph

“Find a connected subgraph G' 
of G, st:

1. G' is Eulerian;

2. All remaining edges of G are 
covered by a vertex in G'.”
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Edge-Hamiltonian Path as 
Dominating Eulerian Subgraph

Eulerian path: 53, 34
Edge-Hamiltonian Path: 51, 52, 53, 32, 34  

Dominating Eulerian Subgraph

“Find a connected subgraph G' 
of G, st:

1. G' is Eulerian;

2. All remaining edges of G are 
covered by a vertex in G'.”
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Edge-Hamiltonian Path as 
Dominating Eulerian Subgraph

Eulerian path: 53, 34
Edge-Hamiltonian Path: 51, 52, 53, 32, 34, 41  

Dominating Eulerian Subgraph

“Find a connected subgraph G' 
of G, st:

1. G' is Eulerian;

2. All remaining edges of G are 
covered by a vertex in G'.”
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Edge-Hamiltonian Path as 
Dominating Eulerian Subgraph

Eulerian path: 53, 34
Edge-Hamiltonian Path: 51, 52, 53, 32, 34, 41, 42  

Dominating Eulerian Subgraph

“Find a connected subgraph G' 
of G, st:

1. G' is Eulerian;

2. All remaining edges of G are 
covered by a vertex in G'.”
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Edge-Hamiltonian Path as 
Dominating Eulerian Subgraph

All the above properties are expressible in CMSO
2
.

Dominating Eulerian Subgraph (thus EHP)  
parameterized by tw is FPT.

Dominating Eulerian Subgraph

“Find a connected subgraph G' 
of G, st:

1. G' is Eulerian;

2. All remaining edges of G are 
covered by a vertex in G'.”
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Edge-Hamiltonian Path as 
Dominating Eulerian Subgraph

All the above properties are expressible in CMSO
2
.

Dominating Eulerian Subgraph (thus EHP)  
parameterized by tw is FPT.
EHP parameterized by cw is FPT. 

Dominating Eulerian Subgraph

“Find a connected subgraph G' 
of G, st:

1. G' is Eulerian;

2. All remaining edges of G are 
covered by a vertex in G'.”



EHP parameterized by cw is FPT 

Theorem (Gursky & Wanke 2000): If G has cw k 
and does not contain Kt,t as a subgraph, then G 
has tw at most 3kt.

(Closing Parenthesis)



UNO Summary
In connection to UNO:

● UNO can be reformulated as (Edge) Hamiltonian Path.

● Complexity-wise:

– UNO parameterized by the size of one of the card's 
attributes is FPT.

– For 2 attributes, it admits a cubic kernel.

Beyond UNO:

● EHP parameterized by |VC| admits a cubic kernel.

● EHP on hypergraphs parameterized by |HS| is FPT.

● EHP parameterized by tw & cw is FPT.



T H A N K    Y O U !

I) Michael Lampis and Valia Mitsou: The Computational Complexity of the Game of 
Set and its Theoretical Applications. LATIN 2014.

II) Michael Lampis, Kazuhisa Makino, Valia Mitsou, and Yushi Uno: Parameterized Edge 
Hamiltonicity. WG 2014.
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